Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Front Pharmacol ; 13: 861295, 2022.
Article in English | MEDLINE | ID: covidwho-2298103

ABSTRACT

Background and purpose: The COVID-19 pandemic continues to pose challenges, especially with the emergence of new SARS-CoV-2 variants that are associated with higher infectivity and/or compromised protection afforded by the current vaccines. There is a high demand for additional preventive and therapeutic strategies effective against this changing virus. Repurposing of approved or clinically tested drugs can provide an immediate solution. Experimental Approach: We applied a novel computational approach to search among approved and commercially available drugs. Antiviral activity of a predicted drug, azelastine, was tested in vitro in SARS-CoV-2 infection assays with Vero E6 cells, Vero cells stably overexpressing the human TMPRSS2 and ACE2 proteins as well as on reconstituted human nasal tissue using the predominant variant circulating in Europe in summer 2020, B.1.177 (D614G variant), and its emerging variants of concern; B.1.1.7 (alpha), B.1.351 (beta) and B.1.617.2 (delta) variants. The effect of azelastine on viral replication was assessed by quantification of viral genomes by droplet digital PCR or qPCR. Key results: The computational approach identified major drug families, such as anti-infective, anti-inflammatory, anti-hypertensive, antihistamine, and neuroactive drugs. Based on its attractive safety profile and availability in nasal formulation, azelastine, a histamine 1 receptor-blocker was selected for experimental testing. Azelastine reduced the virus-induced cytopathic effect and SARS-CoV-2 copy numbers both in preventive and treatment settings upon infection of Vero cells with an EC50 of 2.2-6.5 µM. Comparable potency was observed with the alpha, beta and delta variants. Furthermore, five-fold dilution (containing 0.02% azelastine) of the commercially available nasal spray formulation was highly potent in inhibiting viral propagation in reconstituted human nasal tissue. Conclusion and Implications: Azelastine, an antihistamine available as nasal sprays developed against allergic rhinitis may be considered as a topical prevention or treatment of nasal colonization by SARS-CoV-2. A Phase 2 efficacy indicator study with azelastine-containing nasal spray that was designed based on the findings reported here has been concluded recently, confirming accelerated viral clearance in SARS-CoV-2 positive subjects.

2.
Colloids Surf B Biointerfaces ; 218: 112716, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1956107

ABSTRACT

Microfluidic resistive pulse sensing (MRPS) was used to determine the size -distribution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) based on detecting nearly 30,000 single virions. However, the ultrastructure of SARS-CoV-2 is thoroughly described, but ensemble properties of SARS-CoV-2, e.g., its particle size distribution, are sparsely reported. According to the MRPS results, the size distribution of SARS-CoV-2 follows a log-normal function with a mean value of 85.1 nm, which corresponds to an approximate diameter of the viral envelope. This result also confirms the low number (< 50) of spike proteins on the surface of the virions.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , Microfluidics , Spike Glycoprotein, Coronavirus/metabolism , Virion
3.
Frontiers in pharmacology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-1940066

ABSTRACT

Background and purpose: The COVID-19 pandemic continues to pose challenges, especially with the emergence of new SARS-CoV-2 variants that are associated with higher infectivity and/or compromised protection afforded by the current vaccines. There is a high demand for additional preventive and therapeutic strategies effective against this changing virus. Repurposing of approved or clinically tested drugs can provide an immediate solution. Experimental Approach: We applied a novel computational approach to search among approved and commercially available drugs. Antiviral activity of a predicted drug, azelastine, was tested in vitro in SARS-CoV-2 infection assays with Vero E6 cells, Vero cells stably overexpressing the human TMPRSS2 and ACE2 proteins as well as on reconstituted human nasal tissue using the predominant variant circulating in Europe in summer 2020, B.1.177 (D614G variant), and its emerging variants of concern;B.1.1.7 (alpha), B.1.351 (beta) and B.1.617.2 (delta) variants. The effect of azelastine on viral replication was assessed by quantification of viral genomes by droplet digital PCR or qPCR. Key results: The computational approach identified major drug families, such as anti-infective, anti-inflammatory, anti-hypertensive, antihistamine, and neuroactive drugs. Based on its attractive safety profile and availability in nasal formulation, azelastine, a histamine 1 receptor-blocker was selected for experimental testing. Azelastine reduced the virus-induced cytopathic effect and SARS-CoV-2 copy numbers both in preventive and treatment settings upon infection of Vero cells with an EC50 of 2.2–6.5 µM. Comparable potency was observed with the alpha, beta and delta variants. Furthermore, five-fold dilution (containing 0.02% azelastine) of the commercially available nasal spray formulation was highly potent in inhibiting viral propagation in reconstituted human nasal tissue. Conclusion and Implications: Azelastine, an antihistamine available as nasal sprays developed against allergic rhinitis may be considered as a topical prevention or treatment of nasal colonization by SARS-CoV-2. A Phase 2 efficacy indicator study with azelastine-containing nasal spray that was designed based on the findings reported here has been concluded recently, confirming accelerated viral clearance in SARS-CoV-2 positive subjects.

4.
PLoS Computational Biology ; 18(4), 2022.
Article in English | ProQuest Central | ID: covidwho-1843149

ABSTRACT

Comparing SARS-CoV-2 infection-induced gene expression signatures to drug treatment-induced gene expression signatures is a promising bioinformatic tool to repurpose existing drugs against SARS-CoV-2. The general hypothesis of signature-based drug repurposing is that drugs with inverse similarity to a disease signature can reverse disease phenotype and thus be effective against it. However, in the case of viral infection diseases, like SARS-CoV-2, infected cells also activate adaptive, antiviral pathways, so that the relationship between effective drug and disease signature can be more ambiguous. To address this question, we analysed gene expression data from in vitro SARS-CoV-2 infected cell lines, and gene expression signatures of drugs showing anti-SARS-CoV-2 activity. Our extensive functional genomic analysis showed that both infection and treatment with in vitro effective drugs leads to activation of antiviral pathways like NFkB and JAK-STAT. Based on the similarity—and not inverse similarity—between drug and infection-induced gene expression signatures, we were able to predict the in vitro antiviral activity of drugs. We also identified SREBF1/2, key regulators of lipid metabolising enzymes, as the most activated transcription factors by several in vitro effective antiviral drugs. Using a fluorescently labeled cholesterol sensor, we showed that these drugs decrease the cholesterol levels of plasma-membrane. Supplementing drug-treated cells with cholesterol reversed the in vitro antiviral effect, suggesting the depleting plasma-membrane cholesterol plays a key role in virus inhibitory mechanism. Our results can help to more effectively repurpose approved drugs against SARS-CoV-2, and also highlights key mechanisms behind their antiviral effect.

5.
Pharmaceuticals (Basel) ; 14(11)2021 Oct 30.
Article in English | MEDLINE | ID: covidwho-1488695

ABSTRACT

The protracted global COVID-19 pandemic urges the development of new drugs against the causative agent SARS-CoV-2. The clinically used glycopeptide antibiotic, teicoplanin, emerged as a potential antiviral, and its efficacy was improved with lipophilic modifications. This prompted us to prepare new lipophilic apocarotenoid conjugates of teicoplanin, its pseudoaglycone and the related ristocetin aglycone. Their antiviral effect was tested against SARS-CoV-2 in Vero E6 cells, using a cell viability assay and quantitative PCR of the viral RNA, confirming their micromolar inhibitory activity against viral replication. Interestingly, two of the parent apocarotenoids, bixin and ß-apo-8'carotenoic acid, exerted remarkable anti-SARS-CoV-2 activity. Mechanistic studies involved cathepsin L and B, as well as the main protease 3CLPro, and the results were rationalized by computational studies. Glycopeptide conjugates show dual inhibitory action, while apocarotenoids have mostly cathepsin B and L affinity. Since teicoplanin is a marketed antibiotic and the natural bixin is an approved, cheap and widely used red colorant food additive, these readily available compounds and their conjugates as potential antivirals are worthy of further exploration.

SELECTION OF CITATIONS
SEARCH DETAIL